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Light curves are created by measuring the intensity of reflected sunlight off of the object as it passes overhead.  The 
intensity is dependent on a variety of factors to include the size, shape, orientation, and material composition of the 
satellite.  When observing a satellite from different sites, the solar phase angle (i.e. the angle between the site, 
satellite and sun as illustrated in Fig. 2) determine a great deal about the nature of the light curve.  We are interested 
in determining whether or not there is an optimal arrangement of these angles in order to obtain the most 
information about the satellite in question.  Therefore, we will investigate a variety of pass orientations and site 
locations and compare the resulting light curves. 

 

 
Fig. 2. The photometric light curve of a satellite depends on the geometry of the sensor site, satellite, and 
sun (drawing courtesy of Betty Duncan, Maui High Performance Computing Center). 

 

2.  SIMULATED DATA 

All data used in this study was created using a photometric modeling tool developed in MATLAB® by the Directed 
Energy Directorate of the Air Force Research Laboratory (AFRL).  The simulation uses two line elements (TLEs) to 
determine satellite pass geometry and allows a user to define satellite size, shape, material, and attitude as well as 
observation location.  This tool has been used in the past by AFRL to investigate various non-resolvable space 
object identification problems such as analyzing when single facets become visible or illuminated by the sun as 
viewed from closely spaced observers [1].  A version of this tool has also been used to investigate glints from 
cubesats [2]. 

The first step to choosing the optimal site locations is to decide on criteria for determining what is optimal, which 
itself depends on the question one is trying to answer.  For this study, an optimal combination of sites would be one 
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Since each quadrant contains 900 sites, there are 656 billion possible site combinations.  Analysis of all possible site 
combinations would ultimately require high performance computing.  Thus we initially limited the number of 
combinations so that a viable shape-determination algorithm could be developed serially.  Once an algorithm shows 
promise, it can be applied to all possible site combinations.  The combination that returns the highest certainty 
(along with the correct answer) would become the optimum site combination.  Different pass geometries will most 
likely yield different optimal combinations, and eventually one could combine this data into an optimal combination 
for any geometry. 

To compile a sample data set, we combined data from one satellite pass observed from four different sensor 
locations each which had approximately 50-100 data points for a total sample data set size of 200-400 points.  
However, since we only needed a lower bound curve from the sample data, we had to decimate the sample set.  This 
was done in three steps and is illustrated in Fig. 8.  The first step was to bin the data into one degree phase angle 
intervals and keep the lowest intensity data point.  While all of the points remaining at this point are technically on 
the sample set minimum curve, they might stand out as not being real candidates for an actual lower bound curve.  
Thus for the second step, we removed any point which was brighter (i.e. smaller magnitude) than the point to the left 
of it (at a smaller phase angle).  The final step was based on the fact that lower bound curves are similar to 
increasing/decreasing functions meaning that the concavity of its shape should not change.  Accordingly, we 
calculated a slope between all neighboring points.  If a slope was less steep than the preceding slope, the trailing 
point was discarded.  Fig. 8 below shows how a sample data set evolves into a lower bound curve based on the 
above three steps.  

 

Fig. 8. An initial data set is trimmed to exclude points not likely to be on the lower bound curve. 



Now that the sample sets and comparison sets have been built, the question remains as to how to compare them. 
Three methods were explored in this study, mean squared error (MSE), curve fitting, and analysis of variance 
(ANOVA) of residuals.  These methods are discussed in the next section except for the ANOVA method as it was 
quickly discovered to be completely unreliable.  

2.2. Mean Squared Error 

The mean squared error was found by calculating the difference between each sample set data point and the intensity 
value from the known lower bound curves corresponding to the phase angle bin.  The sample data set was shifted so 
that the first sample point had zero difference since we want to negate material or size differences.  The mean 
squared error was then calculated for each shape, and the shape with the lowest MSE was the determined shape.  Eq. 
(1) shows how MSE was calculated. 
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2.3. Curve Fitting 

This method stemmed from the observation that lower bound curves seem to behave like exponential functions.  
Data sets were trimmed such that they had no points with phase angles greater than the hypothesized cutoff angle, φc 
(55° for tetrahedron and 90° for cube), and then fit with a non-linear least squares (trust region) scheme.  The 
functional form, shown in Eq. (2), was chosen because of its asymptotic behavior.  All constants were constrained to 
be positive to keep the asymptote in the correct direction.  
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The shape whose fit had the lowest reduced chi-squared value ( ) was the answer returned by the algorithm.  One 
advantage of this method was that it gave a metric ( ) for comparing the certainty of different combinations. 

 

3.  EXPERIMENTAL RESULTS 

For the purpose of testing different shape-determination algorithms, we took a subset of all possible 3,600 sensor 
locations, using 3 radii and 3 angles per quadrant for a total of 6,561 combinations.  Each test case was a specific 
shape (tetrahedron or cube) and satellite pass.  Table 1 below lists the four satellite element sets used in this study 
and the six time periods in which we determined passes of various orientations to the terminator.  Thus there was a 
total of 12 test cases.  All test cases had the same bidirectional reflectance distribution (BRDF), a Cook-Torrance 
BRDF of 30% diffusive and 30% specular reflectance.  Additionally, the satellite attitudes were the same fixed ram-
nadir orientation with the body x-axis pointing to the ram direction and the body z-axis pointing to nadir.  Finally, all 
the simulated objects had a size perfectly inscribable into a one meter diameter sphere 
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Fig. 11. Distribution of all simulated cube (left panel) and tetrahedron (right panel) data for the 12 test cases. 

 

5.  CONCLUSIONS 

The two methods attempted, mean squared error and curve fitting, both failed to convincingly identify satellite shape 
using simulated data from combinations of four sensor sites.  Although the MSE method selected the cube 100% of 
the time, its correctness could be attributed to a bias toward selecting the cube.  The curve fitting method appears to 
correctly choose the tetrahedron more often than not, but more work needs to be done in order to quantify the 
confidence in this method (especially for other shapes).  The main issue however, could be the fact that we are 
making an erroneous comparison.  The Monte Carlo scans are based on hundreds of attitudes for any given phase 
angle, whereas our simulated sensor site data contained a very small range of attitudes due to the stability of the 
simulated satellites.  The question of optimal site locations cannot be definitively answered due to the inability of 
either algorithm to succeed at shape determination.  Currently, we are working to incorporate simulated data for a 
spinning object using the same shapes and satellite passes in order to see if the data is more similar to the Monte 
Carlo scans. 
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